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A nonlinear computational investigation of thermal convection due to heating from 
below in a porous layer underlying a fluid layer has been carried out. The motion of 
the fluid in the porous layer is governed by Darcy's equation with the Brinkman 
terms for viscous effects and the Forchheimer term for inertial effects included. The 
motion in the fluid layer is governed by the Navier-Stokes equation. The flow is 
assumed to be two-dimensional and periodic in the horizontal direction, with a 
wavelength equal to the critical value at  onset as predicted by the linear stability 
theory. The numerical scheme used is a combined Galerkin and finite-difference 
method, and appropriate boundary cpnditions are applied at  the interfFce. Results 
have been obtained for depth ratios d = 0, 0.1, 0.2, 0.5 and 1.0, where d is the ratio 
of the thickness of the fluid layer to that of the porous layer. For (i = 0.1, up to R,  
(Rayleigh number of the porous layer) equal to 20 times the critical Rmc, the 
convection is dominated by the porous layer, similar to the situation at  onset, even 
though the Rayleigh number for the fluid layer is well into the supercritical regime. 
The Nusselt number for (i less than the critical value (0.13 in the present case) 
increases sharply with R,, whereas at larger (i, the increFse is very moderate. Heat 
transfer rates predicted by the numerical scheme for d = 0.1 and 0.2 show good 
agreement with the experimental results of Chen & Chen (1989). 

1. Introduction 
In Chen & Chen (1988) we-have shown that when a fluid layer superposed on a 

porous layer is heated from below, the linear stability theory predicts that there is 
a critical depth ratio, the ratio of the thickness of the fluid layer to that of the porous 
layer. For depth ratios less than the critical value, onset of thermal convection is in 
the form of large convection cells in the porous layer with wavelength comparable to 
the depth of the porous layer. For depth ratios larger than the critical value, the 
onset of thermal convection is confined within the fluid layer. Thus, the marginal 
stability curve is bimodal, and a t  the critical depth ratio there is a dramatic increase 
in the critical wavenumber by one order of magnitude. For a porous layer consisting 
of 3 mm diameter glass beads saturated with water, the critical depth ratio is 0.13. 
The theoretical prediction has been verified by experimental results (Chen & Chen 
1989). In practical applications of this convection phenomenon, the Rayleigh 
numbers would be highly supercritical. In this paper, we use a numerical procedure 
to investigate such a convection process up to 20 times the critical value. 

Our linear stability analysis of the problem was preceded by a number of similar 
investigations. Sun (1973) did theoretical and experimental investigations of the 
problem for small depth ratios. Nield (1977) considered the limiting case of the 
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wavenumber approaching zero. Somerton & Catton (1982) considered the stability of 
a superposed fluid and porous layer with respect to internal heat generation. 

Recently, there have been several nonlinear numerical studies carried out 
involving combined porous and fluid layers. Poulikakos (1986) treated a problem in 
which the superposed fluid and porous layers are confined within a box. The ratio of 
the height of the box to the width was varied between 0.2 and 1.0. Applying a 
method developed by Beckermann, Ramadhyani & Viskanta (1986), Poulikakos 
used the same set of fundamental equations to govern the motion in the fluid and in 
the porous layer. This is accomplished by using a binary parameter which assumes 
the value 0 in the fluid region and 1 in the porous region, thus eliminating terms such 
as the Darcy term in the fluid region. By this formulation, no explicit account needs 
to be taken of the interface between the fluid and the porous layer. The solutions 
were obtained by using a finite-volume algorithm. In a number of examples 
presented with a Darcy number of the streamline patterns show that there is 
quite a bit of flow penetration from the fluid layer into the porous layer. Nishimura 
et al. (1986) considered the problem of a superposed layer in a tall, slender box which 
is heated differentially along the two vertical walls. A finite-element method was 
used for the solution of the problem. The results compare favourably with 
experimental results obtained by the same authors. Beckermann et al. (1986) and 
Beckermann, Viskanta & Ramadhyani (1988) considered the sideways heating of 
three variations of combined fluid and porous layers, including a fluid layer on top 
of a porous layer. Using the one-equation model, a finite-volume method was applied 
to solve the equations. Results obtained by computation agreed well with those 
obtained by experiment. 

In our investigation, we use the Navier-Stokes equations for the fluid layer and the 
extended Darcy equation (including Brinkman and Forchheimer terms) for the 
porous layer. Appropriate boundary conditions are applied at the interface between 
the fluid and porous layers. The flow is assumed to be two-dimensional and periodic 
in the horizontal direction. The horizontal extent of the calculation domain is equal 
to one critical wavelength, as predicted by linear stability theory (Chen & Chen, 
1988). A Galerkin method is applied in the horizontal direction, and a hybrid finite- 
difference method is used in the vertical direction. The hybrid includes the implicit 
scheme of Crank-Nicolson for the diffusion terms and the explicit Adam-Bashforth 
scheme for the nonlinear terms. This numerical algorithm is second-order accurate in 
both time and space. The computational method is first verified with results obtained 
by Combarnous & Bories (1975) and Georgiadis & Catton (1986) for porous layers, 
and with the results of the linear stability theory. Then the algorithm was applied to 
the two-layer system to study the effects of depth ratio, Rayleigh nuAmber, and 
Prandtl number on the characteristics of thermal convection. Results ford = 0.1 and 
0.2 are in good agreement with the experimental values found in Chen & Chen (1989). 

2. Problem formulation 
A porous layer of thickness d, underlying a fluid layer of thickness d is considered. 

The top of the fluid layer and the bottom of the porous layer are bounded by rigid 
walls held at constant temperatures, with the temperature at the bottom boundary 
higher than that at the top. It is assumed that the flow is laminar, incompressible, 
and two-dimensional. The physical properties of the fluid are assumed constant, 
except for the density in the buoyancy term in the momentum equations (Boussinesq 
approximation). The porous medium is considered homogeneous and isotropic and is 
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saturated with a fluid which is in local thermodynamic equilibrium with the solid 
matrix. A Cartesian coordinate system is chosen with the origin at the interface 
between the porous and fluid layers, the z-axis vertically upwards, and the y-axis 
horizontal. The continuity, momentum, and energy equations for the fluid layer are 

v - u  = 0, (1) 

= -VP+PV2~-pog[1 -P(T-To)], (2) 

(poCp) -+u.VT =kV2T (: ) (3) 

The corresponding equations for the porous layer are (Georgiadis & Catton 1986) 

v . u m  = 0, (4) 

(6) (PoC,)rnt+(PoCp)um.VTm aTm = kmV2Tm. 

In these equations, the subscript m denotes quantities pertaining to the porous 
medium and urn denotes the filtration velocity. The reference density of the fluid is 
denoted by po, time by t ,  pressure by P ,  dynamic viscosity by p, gravitational 
acceleration by g, temperature by T, specific heat by Cp, heat conductivity by k, 
porosity by 9, and the thermal expansion coefficient by /3, which is defined as 

The permeability of the porous medium is denoted by K .  For a porous medium 
consisting of glass spheres, K is obtained by the Kozeny-Carmen relation 
(Combarnous & Bories 1975), 

K=-- 

in which D is the diameter of the spheres. The heat conductivity of the medium, k,, 
is calculated by 

where k, is the heat conductivity of glass. 
In the momentum equation for the porous layer, (5), two additional terms have 

been included in Darcy’s equation. One is the Brinkman term (p /# )  V2um to account 
for the viscous effect. This term is only effective in the neighbourhood of solid 
boundaries and interfaces. The Forchheimer term (B/K)luml u, takes into account 
the inertial effects when the filtration velocity urn becomes large (see discussion in 
Nield & Joseph 1985). The coefficient B, which is known as the form drag constant, 
is independent of the properties of the fluid, but is dependent on the geometry of the 
medium. For a layer of solid spheres, it can be expressed, according to Ergun (1952), 
as 

(8) 
D2 43 

172.8(1-$)2’ 

k m =  $ k + ( l - + ) k g ,  

1.750 
B =  

150( 1-4) ’ 
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Generally, the magnitude of the Forchheimer term is relatively small, except when 
the solid matrix of the porous medium is sparsely distributed. Experimental support 
for this form of the quadratic drag is described by Ward (1964), while the many 
experimental results summarized by MacDonald et al. (1979) are consistent with this 
form. It is noted that the ‘effective viscosity’ in the porous medium is chosen to be 
equal to the fluid viscosity (Neale & Nader, 1974). 

The boundary conditions a t  the top and bottom walls are 

(9) I V = W = O ,  T = T ,  a t  z = d ;  

Vm=W,=O, Tm=Tf  a t  z = - d  m* 

At the interface, z = 0, the boundary conditions are the continuities of the velocity, 
temperature, shear stress, normal stress, and heat flux : 

I av av,. v=vm,  / U - = p z >  
a2 

aw a w m .  I w = w,, P + 2 p -  = Pm+2p-  az az I 

To render the equations non-dimensional, the characteristic length is chosen to be 
the total height, H = d +a,, of the fluid and porous layers, time to be H 2 / h ,  velocity 
to be v / H ,  and pressure to be p o v 2 / H 2  for both layers. Different scales for 
temperatures are used ; they are (To - T,) v / h  and ( Td- To) vlh,  for the fluid and 
porous layers, respectively. After non-dimensionalization, the equations in the fluid 
layer become 

av aw 
ay a Z  
-+- = 0, 

1 av av av ap a2v a2v 

Pr at ay az ay ay2  a z 2  ’ 
-- +v-+w- =--+-+- 

i aw aw aw a. a2w a2w 

Pr at ay az aZ a y 2  az2 
-~ +V-+ W-=--+-+-+H3BT, 

The equations in the porous layer are 

av, aw, 
ay aZ 

-+-- - 0, 

-- i av, BH 

#Pr at K a Y  # aY2 
+-lumlVm=--- apm - vm+- 1 ( a2vm+a ;~)  - - , 

at 
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$n these equations, the non-dimensional parameters are defined as follows 8 = H / d  ; 
d = d / d ,  ; S2 (the Darcy number) = K / d i  ; G ,  = (p, Cp)J(p0 C,) ; and eT = A/A,, 
where h is the thermal diffusivity and 

A,=-. km 

Po c, 
The Prandtl numbers are Pr = u / A  and Pr, = u/A,, and the Rayleigh numbers 
defined for the fluid and porous layers are, respectively, 

in which To is the temperature at  the interface of the heat conduction state. The 
boundary conditions are 

(20) 
- 1  1 

V = W = O ,  T = - ,  at z = ~ ’  
Pr H ’  

3. Numerical method of solution 
The two most popular and successful methods for solving systems of partial 

differential equations (PDEs) arising from convection4iffusion problems are the 
finite-differencing and the spectral schemes. The spectral methods have always been 
widely used for natural convection problems. This is because relatively few degrees 
of freedom are needed to approximate a given function (especially for a smooth 
function), which reduces both computer storage and execution time. Also, they are 
relatively easy to implement if the boundary conditions allow the use of trigonometric 
functions. 

In this study, we employ a method which combines the Galerkin and finite- 
difference methods as developed by Rogers & Beard (1969) and Meyer-Spache & 
Keller (1980) for the Taylor-Couette problem and by McDonough (1980) for the two- 
dimensional Rayleigh-Bdnard problem. Georgiadis & Catton (1986) applied the same 
scheme as used by McDonough on BBnard convection in a porous medium. Recently, 
Buell ( 1988) extended this method to solve the three-dimensional natural convection 
problem. 

The basic idea of these ‘mixed’ methods is to use the Galerkin method in the 
direction where it is most efficient or convenient, and to use finite differencing in the 
other direction. Thus, the dependent variables are expanded in Fourier series in the 
direction which has a periodic structure, and the Galerkin method is applied. A 
system of PDEs (differentiated with respect to time and the remaining spatial 
coordinate) is obtained and approximated by a second-order-accurate central- 
differencing scheme. To deal with systems of nonlinear algebraic equations, Meyer- 
Spache & Keller (1980) used a full Newton’s method, while McDonough (1980) 
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performed a modal decoupling. Both methods require tedious iterations and initial 
guesses, or some ad hoc damping factors, even though the modal decoupling 
significantly reduces the number of iterations. To avoid the difficulties in initial 
guesses and enormous numbers of iterations for the initial boundary-value problem 
in this study, we employ the Adams-Bashforth explicit scheme to deal with the 
nonlinear terms. This way, the nonlinear terms become forcing terms on the right- 
hand sides of the equations, and the equations for each mode of W ,  T, etc., can be 
solved separately. 

It is assumed that the flow exhibits a horizontal periodicity. Truncated Fourier 
series which are formed in the functional space spanned by an orthonormal basis are 
utilized to represent the solution. In the fluid layer 

and in the porous layer 

= [:;;;I To(z,t) + K - l  

, (23) 

where aK = ka with k = 1 ,2 ,3 ,  ..., K ,  and a is the non-dimensional critical 
wavenumber obtained from the linear stability analysis (Chen & Chen 1988). It is 
defined in terms of the critical wavelength I ,  a = BrcH/I. According to the continuity 
of the velocities a t  the interface between the fluid and porous layers, the non- 
dimensional wavenumbers in both layers are equal. To be consistent with our linear 
analysis, we use the wavenumber a,, which is non-dimensionalized by the thickness 
of the porous layer d, in the presentation of results. The relationship between a, and 
a is 

a, = 2xd,/l = a/( 1 +d/d,). 

The existence of periodic solutions to (23) and (24) has been proved by Rabinowitz 
(1968) for Rayleigh numbers near the onset. McDonough (1980) successfully applied 
these series for Rayleigh numbers up to highly supercritical ones. By numerous 
numerical tests, McDonough (1980) and Buell (1988) have studied the convergence 
rates and the absolute accuracy of the series. 

After eliminating the pressures in (12), (13), (16), and (17), we substitute (23) and 
(24) into the resulting equations, weighted with the appropriate basis, and form inner 
products (integrate in the y-direction over the convection cell), and then obtain a 
system of Galerkin PDEs: 
fluid layer 

i a  
Pr -- at (D2-ai )  WK- (D'-CZ:)~W, = f l , K -  f 2 , K ,  (25) 

(D2-a&)TK = -Prf3 ,K,  (26) 
-- aTK 
at 
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porous layer 

The boundary conditions become : 

in which fi, K ,  i = 1, ..., 4 are forcing terms in the fluid layer, 

f1, K = C { %I1( k, i,j) ( + wi) - %11( k,j, i) ( y + w, wy) 
i - l j -1  aj 

k) w; W,+I,(k,  i,j) w, w; , (34) 11 
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The D in (25) to (30) and the prime in subsequent equations denote the spatial 
derivative in the z-direction. The convolution products I ,  and I ,  are 

0.5 j = Ik+il, 

0 otherwise; 

0.5, j = Ik-il or 

( 0 otherwise. 

I , ( k , i , j )  =- sina,ysina,ycosu,ydy = -0.5 j = k + i ,  (42a) 

j = k + i ,  (42 b )  

2a n ra i 
/a 

I , (k ,  i,j) = 21 cos a, y cos y cos a, y dy = n 

The quadratic Forchheimer terms in (38) and (40), i.e. lurnl, are evaluated first in the 
physical plane using the relation luml = ( v k + w k ) ~  and then transformed to the 
spectral plane to evaluate QK by using a discretized fast Fourier transform (FFT) for 
each time step. 

For solving nonlinear convectiondiffusion equations in one spatial dimension, 
Peyret & Taylor ( 1982) suggested the Crank-Nicolson, Adams-Bashforth hybrid 
scheme when diffusion (viscosity or thermal diffusivity) is not too small. This hybrid 
implicit/explicit method is quite efficient computationally because the nonlinear 
terms are handled explicitly and, thus, iteration is avoided. In addition, the severe 
time-step restriction characteristic of the explicit method is relaxed by advancing the 
diffusion terms implicitly (Crank-Nicolson) . To illustrate the computation pro- 
cedures more clearly, we choose (25) as a typical example to discretize as follows: 

Foraltrd timestep Crank-Nicolson Adarns-bash forth 

where L, is the differential operator D 2 - a i .  At t = 0, let GI = 1 and C, = 0 so that 
the nonlinear terms are advanced initially by the forward Euler method. Thereafter, 
G, = 1.5 and C, = 0.5 are used on the right-hand side of (43) to the end of the 
computation (usually the steady state). The spatial derivatives in the z-direction are 
approximated by standard central finite differencing. This scheme is second-order 
accurate in space and time. 

Calculations are initiated by a sinusoidal temperature distribution with maximum 
magnitude Three other types of perturbations have been tried. These are 
sinusoidal perturbations 2 and 10 times the wavenumber, as initially assumed, and 
a random perturbation. The final steady states obtained by all four initial 
perturbations are exactly the same as measured by the Nusselt number and the 
kinetic energy of the fluid. Only the time to reach steady state corresponding to each 
perturbation is different. For all subsequent calculations, the sinusoidal perturbation 
with one complete wave in each layer is used. The number of terms used in the Fourier 
expansion depends on the depth ratio and Rayleigh number. It ranges from 5 to  15 
terms. The computation was carried out on a SCS 40 mini-supercomputer a t  the 
University of Arizona and on a CRAY-XMP at the San Diego Supercomputer 
Center. 

4. Results and discussion 
For the results reported in this section, calculations are made for the following set 

of parameters : 9 = porosity = 0.389 ; S2 = Darcy number = 0.889 x ; eT = 
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diffusivity ratio = 0.725; G, = specific heat ratio = 0.69. These values are suitable 
for a water-saturated porous medium consisting of 3 mm diameter glass beads. 

Before we used the computer code to calculate the convection characteristics of the 
two-layer system, we applied it to two known cases for verification. One case is for 
d = 0, the porous layer alone, and the other is for the determination of the critical 
condition for the onset of convection in a two-layer system. 

4.1. Verijication of the method of calculation 
4.1.1. Convergence and stability of the computation scheme 

The convergence of the hybrid scheme was tested in the following way. For (i = 1.0, 
Pr = 6.26, and R, = 3RmC, the Nusselt number is evaluated with varying numbers 
of terms and grid points. First, we fixed the number of grid points at 50 in each of 
the layers. The calculation yields a Nusselt number of 1.329 for three terms and 1.335 
for five or seven terms. It is seen that five terms of the Fourier series are sufficient 
to represent the solution correctly. We then used the five-term representation and 
systematically varied the number of grid points in both layers from 30-30 to 100-100 
points. The results are shown in takle 1. 

It is found that, for the case d = 1, Pr = 6.26, and R, = 3Rmc, the solution 
converges with an approximate second-order rate. The same results were observed 
by McDonough (1980) when this hybrid scheme was applied to a single fluid layer. 
The number of grid points used for each depth ratio is shown in table 2. Further 
information about the computational parameters is presented in 54.2.1. 

The usual von Neumann stability analysis is not applicable because of the inherent 
nonlinearity in the governing equations. A complete analysis of the stability of the 
system represented by (1)-(8) and their respective boundary conditions, (lo)-( 12), 
would be an enormous task. However, from a numerical determination of the stable 
region in the parameter space, Pruett (1986) found, for this hybrid scheme, that as 
the finite-difference grid is refined (corresponding to a higher-Prandtl-number fluid 
in our system), smaller time steps are required. 

In  this study, the number of grid points and the corresponding time steps used 
were determined by trial and error. In  general, a finer grid and smaller time steps:re 
needed and convergence of the Fourier series deteriorates for cases with smaller d or 
higher R,. A detailed discussion of the convergence of the hybrid scheme can be 
found in McDonough (1980). Truncation of the series at the values of N shown in 
table 2 leads to errors of about 2% in the Nusselt number, as determined by 
comparison with results for larger N .  Table 2 summarizes the computational 
parameters used in the current study. 

4.1.2. Convection in a porous layer 
The case of 2 = 0 with Pr,  = 4.5 serves as the first test of the accuracy of the 

numerical algorithm. It is known that the fluid remains stationary below the first 
critical Rayleigh number R,  = 47c2 (Lapwood 1948), with heat transferred by 
conduction alone. Above this value of R,, steady convection prevails until the 
second critical value is reached when oscillatory motion first appears. Our 
computation yields a value for the second critical Rayleigh number between of 390 
and 400. Caltagirone (1975) used a finite-difference scheme for flow in a square cell 
and found that the value of the second critical R, is 384f5, whereas the value 
reported by Schubert & Straus (1982) is between 380 and 400. Steen & Aidun (1988) 
obtained a value of 390.7 using an eigenfunction expansion method. Our 
computations for R, = 480 (see figure 1) show that the Nusselt number oscillates 
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4.20 4.29 4.38 4.41 4.56 4.65 
Time x 1000 

FIGURE 1. Oscillation in the Nusselt number in a porous layer (d = 0) at R,  = 480 and 
Pr, = 4.5. 

Points 30-30 4 W O  50-50 60-60 70-70 80-80 lW100 

Nu 1.310 1.324 1.335 1.343 1.349 1.353 1.355 
Error (%) 3.3 2.3 1.5 0.88 0.44 0.15 0 

TABLE 1. Effect of varying the number of grid points 

Grid-points No. of No. of 

50-500 5 i x 10-3 1800 
60-120 5 5 x 10-4 300 

0.5 9 3 x 10-4 650 
6 1 x 10-3 300 

{ !: 40-80 
50-50 

0.1 50-500 9 1 x 10-4 1600 
60-120 5 3 x 10-4 50 

R,/RmC d (fluid-porous) terms At time steps 

3'0 0.5 40-80 5 1 x 10-3 120 1::; 5&50 5 1 x 10-3 120 

50-500 9 1 x 10-4 1 100 
60-120 7 2 x 10-4 70 

5 3 x 10-4 120 
5 1 x 10-3 80 

5.0 { 0.5 !: 40-80 
50-50 

50-500 12 3 x 10-5 1200 
60-120 7 5 x 10-5 70 

5 3 x 10-4 90 
{ !f 40-80 

50-50 

0.1 5(t500 12 2 x 10-5 1200 
20.0 0.2 60-120 7 3 x 10-5 60 [ 0.5 40-80 5 1 x 10-4 80 

1 .o 50-50 5 2 x 10-4 50 

TABLE 2. Computational parameters used in the current study 

'O'O 0.5 5 2 x 10-4 90 

with a non-dimensional period of 0.0069, which compares well with the value of 
0.0073 (using our timescale) obtained by Schubert & Straus. The Nusselt number 
fluctuates between 5.54 and 5.92 in the current study and between 5.61 and 5.95 in 
the work of Schubert & Straus. Further checks of the computer code were made for 
steady-state cases, i.e. R, less than 380. 
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Wavenumber 

FIGURE 2. Variation of the Nusselt number with wavenumber a, for a porous layer (2 = 0) at 
R ,  = 200 : -, present results ; , Georgiadis & Catton (1986) ; 0,  Combarnous & Bories (1975). 

R ,  

100 200 300 350 380 

- - 4.79 4.94 

Present study 2.62 3.84 4.59 4.89 5.03 

Caltagirone (1975) 2.651 3.813 4.523 - - 
Schubert & Straus (1982) - 
Combarnous & Bories (1975), fig. 43 2.6 3.8 4.5 - - 

(No. of terms used) (5) (5) (10) (15) (15) 
TABLE 3. Comparison of steady-state Nusselt numbers calculated by the present method with 

those obtained by previous investigators 

We compare our results a t  R, = 100, 200, and 300 with the computed results of 
Combarnous & Bories (1975) and Caltagirone (1975), and a t  R = 350 and 380 with 
those obtained by Schubert & Straus (1982). The agreement is within 2 YO, as shown 
in table 3. It is noted that the number of terms necessary for the Galerkin series to 
yield correct results increases with the Rayleigh number. A detailed discussion of the 
influence of the number of terms on the results can be found in Schubert & Straus. 

It is known that as R, is increased into the supercritical range, the maximum heat 
transfer is accomplished with cells of smaller wavelengths. We have computed the 
Nusselt number over a range of wavenumbers from 2 to 8 at R, = 200. These values 
are compared with those obtained by Combarnous & Bories (1975) and by Georgiadis 
& Catton (1986) in figure 2. It is seen that agreement between our results and those 
of Georgiadis & Catton are quite good, and that our results are generally higher than 
those of Combarous & Bories, but with similar trends. 

4.1.3. Onset of convection in a two-layer system 
We determine the onset of convection using the nonlinear program by monitoring 

the time evolution of the kinetic energy of the system due to an initial perturbation 
of infinitesimal magnitude. At subcritical Rayleigh numbers, after the initial dis- 
turbance, the kinetic energy decays indefinitely, whereas a t  supercritical Rayleigh 
numbers, the kinetic energy grows to large magnitudes. At the critical Rayleigh 
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ci 0 0.1 0.2 0.5 1 .o 
Linear stability 

a m  3.14 2.16 14.09 5.70 2.86 
R m  39.49 19.63 4.29 0.113 0.0071 

R m  39.50 17.80 4.85 0.132 0.0081 

TABLE 4. Comparison of the critical Rayleigh number of the porous layer as calculated by 
linear stability theory and the present nonlinear computational scheme 

Nonlinear results 

number, the kinetic energy remains cpnstant at a rather low level. The critical 
Rayleigh numbers thus determined ford = 0,0.1,0.2,0.5, and 1.0 are compared with 
the corresponding values obtained by Chen & Chen (1988) using a linear stability 
analysis in table 4. The agreement is generally good, with a discrepancy of less than 
15%. It is noted, however, that the boundary conditions at  the interface used in the 
nonlinear calculation are different from those used in the linear stability analysis. I n  
the former, regular boundary conditions are invoked at the interface because Darcy’s 
equation is augmented by the Brinkman term. In  the latter, a velocity slip is applied 
a t  the interface according to the Beavers & Joseph (1967) condition because only 
Darcy’s equation is used in the porous layer. The discrepancy in the predictions may 
be attributed to the difference in the boundary conditions. The critical wavenumber 
as predicted by the linear stability theory for each depth ratio is also listed in table + for later reference. It is seen that the wavenumber increased sevenfold between 
d = 0.1 and 0.2. 

4.2. Two-layer system with Pr = 6.26 
4.2.1. Flow patterns and isotherms 

The first set of computations, in which we justify the use of th? critical wavelength 
a t  onset of convection in all supercritical states, was made for d = 1.0. The steady- 
state Nusselt number was calculated for cells of decreasing size corresponding to a 
range of wavenumbers a, from 2 to 6 a t  1.5 to 20 times the critical Rayleigh number. 
The results are shown in figure 3. The critical wavenumber according to the linear 
theory for this case is 2.86. It is seen from figure 3 that the maximum of each curve 
is quite shallow ; at a, = 2.86, the Nusselt number is either a t  or very close to  the 
maximum value. In  view of these results, it is reasonable to assume that the 
characteristics of convection a t  the critical wavenumber are representative of the 
flow in the two-layer system. Therefore, in all subsequent calculations, we fix the size 
of the convection cell to that  a t  onset for allfisupercritical Rayleigh numbers. 

The streamline patterns and isotherms for d = 1.0 a t  R, = 1.5RmC up to 20RmC are 
presented in figure 4. The convection cell is presented a t  the correct aspect ratio. It 
is seen that convection is mainly confined within the fluid layer and intensifies as R, 
is increased. Furthermore, the convection cell in the fluid layer is located slightly 
above the porous-fluid interface indicated by the dotted line. The flow in the porous 
layer is very weak ; the streamline patterns are not discernible with A$ = 0.4. As R, 
is increased, the hot plume rising in the fluid layer becomes stronger. Because of the 
tangential flow boundary condition a t  the interface, a weak descending plume is 
induced in the po~ous layer. 

The rfsults ford = 0.5 are shown in figure 5.  The general trend is similar to the case 
where d = 1.0. As the convective motion becomes more intense, the temperature 
difference between the top wall and interface becomes less. At the same time, the 
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FIGURE 3. Variation of Nusselt number with wavenumber a, for d = 1.0, Pr = 6.26 
rtt R ,  = 1.5RmC to 2ORmc. 

temperature difference across the porous layer becomes larger. The upward 
displacement of the convection cell in the fluid layer becomes more prominent. This 
is reminisce$ of the convection pattern at onset (Chen & Chen 1988), as shown in 
figure 6 for d = 0.5 and 1.0. 

As 2 is reduced to 0.2, the aspect ratio of the unit convection cell becomes quite 
small, as shown in figure 7. A more intense Eair of convection cells is induced in the 
porous layer at the interface a t  high R,. At d = 0.1, which is below the critical value 
of 0.13, the convection becomes dominated by the porous layer, as shown in figure 
8, consistent with our linear results. The isotherms indicate a downward plume in the 
middle of the cell, rather than an upward plume as indicated in the previous cases. 
This is a random occurrence involving a lateral shift of half a wavelength., As R ,  is 
increased, the strength of the plume becomes larger such that it has considerable 
lateral spread when it reaches the bottom. 

For all cases considered, no oscillation was observed up to 2ORmc. It is known that 
for a porous layer, oscillation starts at 10Rmc x 380-390. For a fluid layer, 
Krishnamurti (1970) has determined experimentally that oscillatory convection 
starts at 18Rc for fixed-fixed boundary conditions. Recent numerical results of 
Goldhirsch, Pelz & Orszag (1989) for convection in a box show that oscillation starts 
a t  approximately 20R,. In an infinite horizontal fluid layer with free-free conditions, 
Curry et al. (1984) showed by calculation that oscillation starts at 50Rc when 
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FIQURE 6. Streamline patterns for ( a )  (i = 1.0 and ( b )  (i = 0.5 at onset according to the linear 
stability theory (Chen & Chen 1988). 

symmetry breaking is permitted. But when symmetry is enforced, transition to 
oscillatory motion is delayed until 9OR,. 

The critical Rayleigh numbers in the porops layer, Rmc, and ’9 the fluid layer, R,, 
are listed in table 5 for four depth ratios of d = 0.1 to  1.0. For d = 0.1, the stability 
of the system is dominated by the por9us layer. The corresponding R, is within the 
subcritical range for a fluid layer. For d >, 0.2, the stability is controlled by the fluid 
layer and the values of R, are comparable to  those of a single fluid layer. For all depth 
ratios considered, 20RmC is always less than 390, the second critical Rayleigh number 
for transition to  oscillatory convection for a porous layer. At larger depth ratios, 0.2 
to 1 .O, even though the values of 20R, are comparable to the second critical Rayleigh 
number for a fluid layer, we observed no oscillation because of the strong damping 
effect of the porous layer underneath the fluid layer. 

Our procedure of computation is, first to fix the grid points to 50 in each layer, then 
increase the number of Galerkin terms until convergence is achieved. Then, the grid 
points in each layer are varied systematically to  effect convergence. If no satisfactory 
convergence is found, the number of terms is increased and the procedure is repeated 
until satisfactory convergence is obtained. Should the final convection state lie below 
the second transition point, a steady result emerges. The steady solution is generally 
followed for approximately 10% of the time needed to reach the steady solution. 
Should the final state lie above the second transition point, an unsteady state results. 
For all cases encountered a t  R ,  < 2ORmc, no oscillatory states were found. We are 
confident that these results are correct, and they are supported by our physical 
reasoning presented above. Once oscillatory convection sets in, the number of 
Galerkin terms increases dramatically because both lower and high modes play a 
crucial role in the solution, with concomitant increases in CPU time. We did not 
pursue the determination of the onset of oscillations in the two-layer problem 
because of constraints on the CPU time available to us. 

4.2.2. Heat transfer across the two-layer system 
The heat transfer across the combined system as represented by the Nusselt number 

for the cases conlsidered are shown as a function of the Rayleigh number in figure 9. 
The values for d = 0 were calculated up to R,  = 390, beyond which t , e  Nusselt 
number becomes oscillatory. The Nusselt number for 2 = 0.1 follows the d = 0 curve 
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ci Rmc R, 20Rmc 20R, 

0.1 17.8 381 350 7620 
0.2 4.85 1660 97 33 200 
0.5 0.132 1765 2.64 35300 
1.0 0.0081 1732 0.16 34680 

TABLE 5. Critical Rayleigh numbers at various depth ratios 

FIGURE 8. As figure 4 but for 2 = 0.1 with A$ = 0.5 and AT = 0.1. 
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FIGURE 9. Variation of Nusselt number with Rayieigh number for d = 0, 0.1, 0.2, 0.5, and 1.0. 

quite closely, and the increase with R, is quite appreciable, attaining a value of 7.13 
at R, = 20R, . As the depth ratio is increased beyond the critical value and the 
convection is hid-layer dominated, the Nusselt number suffers a drastic decrease. 
This is because the porous layer, being non-convecting, serves as an insulating layer, 
as indicated in figure 7. Modest increase with layer depth is indicated. However, 
unless the fluid in the porous layer participates in the convection, the Nusselt 
number remains below 2. 

As a furthy check on our computational schem:, we have evaluated the Nusselt 
number for d = 0.2 at R,  = 2RmC and 3R,, and d = 0.1 at R, = 1.5RmC and 2RmC 
using the same physical properties as those in the experiments we performed earlier 
(Chen & Chen 1989). It is known that the heat transfer rate computed by assuming 
two-dimensional rolls in porous layers shows remarkable agreement with experiments 
in which the flow pattern is known to be three-dimensional. The computational 
results of Straus (1974) and Combarnous & Bories (1975) compare favourably with 
the experimental results of Elder (1967), Combarnous & LeFur (1969), and Buretta 
(1972). In the experiments of Combarnous & LeFur, the three-dimensional 
convection cells were mapped by detailed measurements of the temperature 
distribution in the middle of the porous layer. Although no data were, presented 
about the convection pattern in the other two experiments, three-dimensional cells 
probably prevailed. 

In the experiment by Chen & Chen (1989) with d = 0.2, the fluid used was a 60% 
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Nusselt number 

R,/R,, Experimental Computational Error 

1.06 1.053 -0.8% 
1.21 1.145 -5.7% 

1.38 1.425 +3.2% 
2.11 2.032 -3.8% 

0.2 { 9 
0.1 { i . 5  

TABLE 6. Comparison between present computed results and the experimental results of Chen & 
Chen (1989) 

Pr 

R,/R,, 0.72 6.26 100.0 

1.5 1.134 1.134 1.134 
3.0 1.328 1.329 1.329 
5.0 1.426 1.423 1.422 

10.0 1.512 1.523 1.517 
20.0 1.595 1.620 1.594 

TABLE 7 .  Nusselt number results for fluids with increasing Prandtl numbers at d = 1.0 

glycerine-water solution with a Prandtl number of 100, and when d = 0.1, the fluid 
was water. Comparisons are made in figures 10(a) and 10(b) .  In  these figures, the 
experimental data points are unfilled symbols and the two computed values are 
represented by dark squares. It can be seen that agreement in both cases is very 
good. For a more detailed comparison, the values are listed in table 6. 

4.2.3. Effect of Prandtl number 
To investigate the effect of Prandtl number on the CharacterisJics of thermal 

convection, we have made calculations with Pr = 0.72 and 100 for d = 1.0, keeping 
all other physical properties the same as in the previous cases. Up to R, = 20RmC, no 
oscillations are encountered, similar to the case with water. The streamline patterns 
and the isotherm distributions are generally similar to those we have shown for 
water in figure 5. The Nusselt numbers at increasing Rayleigh numbers for Pr = 0.72, 
6.26, and 100 are listed in table 7. It is seen that the heat transfer rate is hardly 
affected by a more than 100-fold increase in the Prandtl number. This is because heat 
transfer in the porous layer is essentially by conduction. 

5. Conclusions 
The following conclusions may be drawn from the results of the present 

investigation : 
(i) In  superposed fluid and porous layers of equal thickness, the steady heat 

transfer rate calculated using the critical wavelength at  onset of convection is either 
at or within 2% of the maximuq value. 

(ii) For the cases considered, d = 0.1 to 1.0, convection remains steady up to 20 
times the critical Rayleigh number. 

(iii) Heat transfer rates for superposed layers with depth ratios less than the 
critical value increase much faster with Rayleigh numbers than those with depth 
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ratios greater than the critical. This is because at low depth ratios, the convection is 
throughout the combined layer. At  high depth ratios, convection is confined within 
the fluid layer and heat transfer is limited by heat conduction through the porous 
layer. 
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